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Abstract

Economic capital has become an important component of bank and insurance compa-
nies’ financial and risk management. Risk measures and risk based capital have been
the focus of increased research arising from regulatory requirements such as Basel
IT and the insurer risk based capital requirements. Copulas are increasingly used for
modelling the dependence structure of financial and insurance risks. Traditional risk
measures for insurance and financial risks based on multivariate normal distributions
may not measure the dependence of many insurance risks, partly because of the tail de-
pendence in these risks. This paper assesses the use of copulas as a modelling approach
for dependent risks. We consider commonly used risk measures for economic capital.
Our aim is to quantify the impact on risk measures and capital requirements of differ-
ent copula based bivariate dependent risk models. We use commonly proposed copula
functions and estimate VaR and TailVaR (CTE) risk measures used for economic cap-
ital assuming different levels of dependence and different marginal distributions. We
consider the diversification benefits arising from different levels of dependence. We
determine and report the standard errors of the economic capital estimates. Our ex-
periments with bivariate copula models provide guidance in the practical application
of dependent risk models. Surprisingly, for the sample size we assume, we find that
the level of dependence and the marginal distributions have more of an effect on risk
measures than the copula used, except for the TailVaR risk measure at high proba-
bility levels. Taking into account the standard errors of our estimates, it is difficult to
distinguish between the estimated risk measures for different copulas.
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1 Introduction

In recent years, economic capital has become a major focus of bank and insurer risk man-
agement. Determining an adequate level of risk based capital for regulatory purposes is also
very important for banks and insurers. Much of the use of economic capital has been driven
by changes in banking and insurer prudential regulations. These regulations require the banks
and insurance companies to assess the risks of their lines of business and other activities, and
to hold sufficient capital against these risks. Internal models are allowed under Basel IT and
generally there is an increased emphasis on risk based assessment of capital. Increasingly, eco-
nomic capital is being used for financial decision making such as pricing, assessing business
performances and assessment of profitability of lines of business, products and divisions.

The commonly used approach to assessing economic capital has been the Value at Risk ap-
proach, usually denoted as VaR risk measure. This is a frequency of loss risk measure based on
a quantile of the distribution of the risk under consideration. The risk could be an exposure to
a market traded financial instrument or an insurance product. Other risk measures such as Tail
Value at Risk, often referred to as TailVaR and also known as Conditional Tail Expectation
(CTE), also allows for the severity of the potential loss beyond the Value at Risk. TailVaR
is increasingly used for economic capital. There are many other risk measures that have been
proposed. However, the most commonly used measures continue to be VaR and TailVaR.

Multivariate risk models incorporating dependence, and in particular copulas, are important
in risk modelling in the banking and insurance areas. Copulas are one of the favored models
for dependence in risk management. Recent literature demonstrates that linear correlation
agsumptions that have been the standard assumptions for many financial modelling including
portfolio theory, option pricing and asset allocation, are misleading when risks are not normally
distributed. Furthermore, this assumption is also misleading when dependence structures are
nonlinear. Embrechts et al (1999)[8] demonstrate how linear correlation can be a source of
confusion. They show that it is possible to have two different multivariate distributions with
the same marginal distributions and the same lincar correlation but with quite different de-
pendencies.

The shortcomings of linear correlation to measure nonlinear risk dependencies is a critical
issue to an insurer. This is because insurance risks have been shown to exhibit positive tail
dependence that is not linear, see for example Venter (2002) [16]. This tail dependence has a
significant impact on the assessment of the capital requirements for an insurance company as
demonstrated in, amongst others, Tang (2005) [14] and Tang and Valdez (2005) [15].

Copulas are being increasingly used in the market, credit and operational risk models in bank-
ing and insurance. In insurance risk modelling and capital management, the increased use of
stochastic modelling for capital assessment that is mainly based on Dynamic Financial Analy-
sis (DFA), has incrcascd interest and rescarch on the use of copulas in modelling dependencies
by line of business. Practitioners and researchers have been applying copulas in their DFA
models to capture the dependence structure of an insurance portfolio. Isaacs (2003) [11] uses a
Gumbel copula to model the multivariate loss distribution and to consider the capital require-



ments of a general insurer and compares the capital requirements based on a Gumbel copula
with that determined using model based on linear correlations. Tang and Valdez (2005) [15]
investigate the impact of the use of t-copulas with varying degrees of freedom on the economic
capital of a general insurer and evaluate the impact of dependence on the diversification ben-
efits in a multi-line insurer.

Multivariate modelling of risks in insurance is an area that has not been explored in much
detail and the impact of different dependence structures on economic capital is not well under-
stood. The quantification of the effect of dependence structure on risk measures and capital is
an important first step in the application of more advanced models in practical applications.
We assess the effect of dependence using experiments with different univariate marginal dis-
tributions and different copulas at different levels of dependence between risks. We focus on
bivariate risks since this highlights the impact the selection of different copulas most clearly.
We use commonly adopted copulas in both finance and insurance dependence modelling.

2 Risk Measures and Economic Capital

We will investigate the impact of different dependence between risks on the economic capital
of an insurer using copulas in the bivariate case by considering the two commonly used risk
measures; Value-at-Risk (VaR) and Tail Value-at-Risk (TailVaR). The VaR risk measure has
been adopted by the Basel Committee on Banking Supervision for assessing the capital ade-
quacy requirements for banks and is also a commonly used risk measure for setting risk limits
in banks. In insurance, the probability of ruin has been a concept that actuaries and regulators
have studied and this is equivalent to the VaR risk measure. We begin with a brief coverage
of the basic concepts of the two risk measures.

2.0.1 Value at Risk

Value-at-Risk (VaR) is one of the main risk measurement methods used by practitioners to
calculate the capital requirements of a risk portfolio. There are weaknesses in this risk mea-
sure. Artzner (1999) [1] provides a discussion of these weaknesses. Despite these weaknesses
identified by researchers, VaR continues to be the most commonly used method for assessing
risk capital and has become a standard measure used in determining economic capital. The
definition of VaR is the maximum loss borne by a financial institution over a specified period
of time at a specified probability, «, that is, Pr(Loss > VaR) = 1 - «. If X is an (absolutely)
continuons random variable whose cumulative distribution function F(X) describes the neg-
ative valuc of a risky financial position at a specified horizon time t, then for a probability 0
<a <1, VaR , (X) = inf{x|F(X) > «a}. In general, « is between 0.95 and 0.995 depending
on the time horizon and the application.



2.0.2 Tail Value at Risk

Since VaR only takes into account the probability of a loss it takes no account of the size of the
loss in the event that the loss exceeds the VaR. Tt is also not a coherent risk measure because
it is not sub-additive which means that the sum of the VaR measures on a portfolio of risks
can cxceed the VaR risk measure determined for the total portfolio. Portfolio risk measures
are expected to be less than or equal to the sum of the risk measures for the individual risks
in a portfolio because of the effect of diversification on the risk measure. Tail Value at Risk,
also called TailVaR, is an extension of VaR. TailVaR allows for the severity of the loss. It
has the advantage over VaR that it satisfies the properties of a coherent risk measure and
is sub-additive. It is a more conservative measure than VaR since it takes into account the
average of the losses that exceed VaR, resulting in a higher risk measure.

If X is an (absolutely) continuous random variable with distribution function F(z) that de-
scribes the negative profit and loss distribution of the risky financial position at the specified
horizon time 7 (thus losses are positive), then the TailVaR for X is (Bradley (2003) [2])

TailVaR,(X) = E(X|X > VaRo(X)).

There are various risk measures that are the same as or equivalent to TailVaR. For example
Conditional Tail Expectation (CTE) is equivalent to TailVaR.

3 Copulas

Copulas are a useful technique for modelling multivariate risks. They allow the multivariate
distribution to be separated into the marginal distributions and a function that captures
the multivariate dependence between the marginal distributions. Copulas are multivariate
distribution functions whosc one-dimensional marginals are uniform on the interval [0,1]. We
provide a brief review of some basic concepts of copulas and how they measure dependence.
Further details are found in many sources including Nelsen (1999) [13] and Cherubini et al
(2004) [3].

Assume a portfolio of d risks cach with continuous strictly increasing distribution functions.
The joint probability distribution for a portfolio of risks is denoted by

Fix (21,.+.,22) = Pt (X1 € 21,..., X4 < 24)

In practice data is often analyzed for the marginal distributions of each risk, or a parametric
form for these distributions is assumed and fitted. The marginal distributions are denoted by
FXI,...,FX where in (.’E) :PI'(XZ S :L’l)

d

The joint probability distribution can be written as



where each U; is uniform (0,1) . From this we derive the underlying form of a copula function.
Sklar’s Theorem (Nelsen 1999 [13]) is an important result that shows the existence of the copula
function and the relationship between the nnivariate margins and the multivariate distribution
function. We will consider only the case of continuous marginal distributions. This Theorem
shows that any continuous multivariate distribution has a unique copula given by

Fx (21,...,2q) =C(F1(z1),...,Fy(xq))

For discrete distributions the copula exists but may not be unique. The converse result is that
the copula can be written in terms of the multivariate distribution and the univariate margins
as

C(’LL17...7’U,d):FX (Fl_l (ul)V...de_l(ud))

where Fi_1 (u;) are the inverses, or quantiles, of the margins, assumed continuous and non-

decreasing.
Another important result is that if (X7, ..., X4) have copula C and if T}, . .., T4 are increasing
continuous functions then (7} (X1),..., Ty (X4)) also has copula C. The relevance of this result

is that, if a copula model applies to specified risks, then a log (or similar) transformation of
the rigks will have the same copula or dependence structure.

Properties of the copula include P[V < v|U < u] = 2090 and PV > o|U = u] = 1 — Elev)

du Su
and PIU > u|V = o] =1 - &),

Archimedcan copulas are a special class of copulas that are widely used in finance and insurance
because they are simple to construct and there are many convenient properties possessed by
this class of copulas. Nelsen (1999) ([13]) provides details of these and a good discussion is
also given in Frees and Valdez (1998) [9]. This class of copulas is defined by a generator ¢, a
convex decreasing function with domain (0, 1] and range [0,00) such that ¢ (1) = 0, with

Co (u,v) = ¢~ (0 (u) + ¢ (v))

with u,v in (0,1]. A number of the copulas we will examine come from this popular class of
copulas.

We will consider only the bivariate case. In general we will have many more risks to consider and
the computational and estimation issues will be increased as a result. Consider the bivariate
cumulative distribution F (z,y) = C (F} (z), F2 (y)) then the density is given by

OF (x,y)

flz,y)= 220y



~ 11 (@) o) LD P2 )

=f1(2) f2(y) ¢ (F1 (), F2 (y))

where ¢ is the density of C.

Linear correlation is not sufficient as a measure of dependence for most risks in finance and
insurance. Other measures of dependence including for example rank correlation are more
useful measures of non-linear relationships. For X and Y with joint distribution F' and copula
C' and marginal distribution functions Fx and Fy, (X;,Y)) and (X2,Y3) independent and
identically distributed pairs of random variables cach with joint distribution F', then Kendall’s
Tau is defined as

r=Pr[(X; — Xa) (Y1 — Ya) > 0] — Pr[(X; — X3) (Y, — ¥3) < 0]

and Spearman’s Rho, which measures the lincar corrclation of Fx (X), Fy (Y), is defined as

ps (X,Y) =p(Fx (X),Fv (Y))
where p (u,v) is the linear correlation. Spearman’s Rho is also equal to

ps (X, Y) = 12/1/1 [C (u,v) — uv] dudv
00

so that it can be interpreted as a measure of the distance between the actual distribution and
the case of independence since C (u, v) = wv is the independence copula.

There are many copulas that have been proposed for use in insurance and financial risk models.
Nelsen (1999) [13] provides an cxccllent coverage of methods of generating copulas as well as
many of the copula functions.

4 Dependence for Copula Models

Insurance risks exhibit tail dependence that is not linear (Venter (2002) [16]). We briefly review
the tail dependence of some commonly used copula functions. Details of the tail dependence
measure for copulas are provided in the literature in papers such as Embrechts et al (2001)
[7], Nelsen (1999) [13], and Lindskog (2000) [12].

A commonly used definition of tail dependence is as follows.

Definition 1 Let X and Y be continuous random variables with distribution functions Fy and
Fy. The coefficient of upper tail dependence of X and Y is

limy, 1 P[Y > Fy H(w)|X > FrHuw)] = \v



where \iy € [0,1] exists. If Ay € (0,1], X and Y are said to be asymptotic dependent in the
upper tail; if Ay =0, X and Y are said to be asymptotic independent in the upper tail.

The lower tail dependence can be defined in a similar way as

limy 04 P[Y <= F; Y (u)|X <= F7 Y (uw)] = AL

This is asymptotic tail dependence and can be used to characterize different bivariate copulas.
In fact we have for bivariate copulas:

Definition 2 Upper tail dependence of copulas. If C' is a bivariate copula such that
limu%lfc_’(ua ’U,)/(]. - U‘) =Au

exists, then C has upper tail dependence if Ay € (0,1], and no upper tail dependence if Ayy = 0.

Note that C(u,u) =1 — 2u+ C(u,u).

Definition 3 Lower tail dependence of copulas. If C is a bivariate copula such that

limy, o+ C(u,u)/(u) = A,

exists, then C has lower tail dependence if A, € (0,1], and no lower tail dependence if A, = 0.

5 Tail dependence of bivariate copulas

This section compares the tail dependence of four of the commonly used copulas that we will
adopt for our study. Details of the properties of these copulas are given in the literature includ-
ing Nelsen (1999) [13], Cherubini (2004) [3] and Embrechts et al (2001)[7]. The distribution
functions and densities of the copulas we consider areshown in Figure 2.

Gumbel-Hougaard Copula

The Gumbel-Hougaard, or Gumbel, copula is one of most commonly use copula functions for
measuring insurance risks because of its extreme value nature. As deseribed in Cherubini et
al (2004) ([3], page 127), "the lower and upper bound for its parameter correspond to the
product copula and the upper Fréchet bound.” It has the flexibility to handle independence
and positive dependence.

The form of the copula is

Co(u,v) = exp(—[(=lnw)? + (—inv)?]?),



for 6 >1

C(u,u)  1—-2u+C(u,u)
l—u 1—wu

1 — 2u + exp(2Y/%Inu)
1—u

1—2u+ 7/,21/0
1—u

By I'Hopital rule, the upper tail dependence is given by
Mg = limg, - C(u,u) /(1 —u) =2 — lz'mUHrQl/gu,Ql/ef1

=221/

Thus for § > 1, A € (0,1], C(u,u) has upper tail dependence. To show that Ay € (0,1] for
# > 1, we can first check the lower limit by setting Ay = 0. We can see that A = 1 when 6 = 1.
We can also show that, if § — oo, we will have A\ = 1. Hence, Ay € (0,1] with 8 > 1, and
the Gumbel copula has upper tail dependence. The Gumbel copula does not exhibit lower tail
dependence.

Frank Copula

The Frank copula is a commonly used copula by researchers including Venter (2002) [16], Frees
and Valdez (1999) [9]. It is a member of the class of Archimedcan copulas. This is the only
Archimedean copula that has the property of being radially symmetric. Radial symmetry is
defined next and discussed in more detail in Nelsen (1999) [13].

Definition 4 Radial Symmetry Let X and Y be continuous random wvariables with joint
distribution function H marginal distribution functions F and G, respectively, and copula C.
Further suppose that X and Y are symmetric about a and b, respectively. Then (X,Y) is radially
symmetric about (a,b) so that

H satisfies H(a + z,b+y) = H(a — z,b — ) for all (z,y) € R?
if and only if C satisfies the following.

C(u,v) = C(u,v) for all (u,v) € I.

Hence radial symmetry implies that the pairs (u,v) and (1-u,1-v) have the same Frank distri-
bution. The Frank copula can be generated in a simple manner because it is an Archimedean



copula and can be defined in terms of a generator.

Definition 5 Suppose u and v are random variables with copula Clu,v) with parameter o >
0 generated by ¢(t) = -In((e7%-1)/( e %-1)). Then the Frank copula C is defined as follows.

(e~ 1)(e* — 1)
e 01

C(u,v) = —%lnl +

The inverse of the generator can be expressed as ¢~ 1(s) =1 / 6 In(1+ €% (e7? — 1)) and is
completely monotonic for 8 > 0. The Frank copula has the following features.

(e~ 1) ~ 1)

1
Co(u,v) = —=In(l+

6 (e? — 1)
Clu,u)  1—2u+C(u,u)
1—w 1—u
] _ ] 1 (€9u _ 1)2
A =limy_1-Clu,u) /(1 —u) =limy_;- (1+2u+ Eln(l + W))/(l —u)

So that lim,_,;-C(u,u)/(1 — u) = 0 and, as discussed in Venter (2002) [16], the Frank cop-
ula does not have upper tail dependence. Since it is radially symmetric we immediately have
Au = Ar, = 0, so that it has no lower tail dependence. The Frank copula is not a copula that
can capture extreme tail dependence for risk measures in contrast to the Gumbel copula.

Gaussian Copula

The Gaussian copula is widely used by both practitioners and researchers in both the finance
and insurance industry. The dependence of this copula is fully determined by parameters for a
correlation matrix. It is has become a standard model in the area of credit risk for modelling
dependence between company asset returns or default times.

The bivariate copula is given by the function

§2 — 2pst + 2

& H(u) e (v) )
Olu-v) = / / QWMex‘D( 2(1 - p?) Jdsd

where —1 < p < 1 and @ is the univariate standard normal distribution function.

The upper tail dependence is given by

)\U - llmu%l*é(uau)/(l - U‘)

= —lim, ;%€ — 9%im,, PV > ulU = u] = lim,_,, P[®~Y(V) > 2[®~}(U) > y] = 0



so that the Gaussian copula has no upper tail dependence.

Student-t Copula

The Student-t copula is another family of copulas that is increasingly used in finance and
insurance. As with the Gaussian copula, the dependence for these copulas is fully captured by
the parameters of a correlation matrix but the Student-t copula has the benefit of having (upper
and lower) tail dependence in contrast to the Gaussian copula that has no tail dependence. Tt
is important to note that, although the Gaussian copula has no tail dependence, the definition
of tail dependence used is an asymptotic measure. So this is expected to be most relevant for
very high probabilities when determining VaR and TailVaR risk measures.

The Student-t copula is given by

ty (w) g (v)

v

_ 1 s? — 2pst + 2
Olu-v) = / / 21 /(1 — p2) (- v(l - p?) Jdsdt

-0 -0

The upper tail dependence is given by

Ay =limg oo P(X > 2|Y > y)

= 2ling>oozu+l (( ,/V.:_;Z )1/2 %)

- )i
= 2t (L)

Details of the tail dependence measures described above can be seen in Embrechts et al (2001)
[7] and Lindskog (2000)[12].

Table 1 below compares the upper and lower tail dependence measures of the copulas we will
use in our experiments. To summarise:

(1) Both Gumbel and Student-t copulas have non-zero upper tail dependence.
(2) Both Gaussian and Frank copulas have zero upper tail dependence.

6 Bivariate Risk Models using Copulas

We will assess these four commonly used copulas as suitable candidates for assessing risk based
capital. We will use different marginal distributions along with these different copulas to as-
sess the impact of each of these. We will also assume different levels of dependence. We are

10



Copula Upper Tail Dependence Lower Tail Dependence
Gumbel )\U:2—21/9 for 8 > 1 AL =20
Frank Ay =10 AL=Xyp=0
Gaussian 2limy 0o ®(x/(1 — p)/(/(1 = p?)))

i.e.)\U:()forp<1. A=Ay =0

Hence, no upper tail dependence.
Student t Copula 2t_y+1(%) AL = Ay
v = degrees of freedom, p = correlation
Table 1

Tail dependence properties of the copulas used in this study.

interested in assessing which of these factors is important in assessing economic capital. Table

2 summarises the characteristics of the four copulas.

Copula Characteristics Dependence Measure

Guassian | Symmetric =9y @)
higher probability mass concentrated at the center. p=06x %(%)
Does not capture tail dependence. r = lincar corrclation and —1 <r <1
1< r <1

Student-t | Symmetric T=2% %"(r)
Related to the Gaussian copula p=06x asin(3)
Captures both left and right tail dependence r = linear correlation and —1 < <1
higher probability mass concentrated at the center.
A<r<

Gumbel Right tail extreme, “comet-like” shape T9=1— %
Not suitable for random variables that are negatively correlated | no closed form for the Spearman’s rho
0 € [1, oo]
Boundaries: C1 = I, Coo = M
0<r<1

Frank Radially symmetric 9 =1- %(1 - D1(6))
Capture both left and right tail dependence po=1- %(D1 (6) - D2(6))
6 € (-00, o)\ 0 Dip(w) =% [ =" a
Boundaries and special case: C_oo = W, Co =11, Coo = M Dy(—z) = Dg(x) + kk_-fl
A<r<
Table 2

Summary of characteristics of the copulas used in the experiments in this study.

To illustrate the bivariate models we will use in this study, we simulated 1000 samples for cach
of the bivariate copulas using MatLab. Figure 1 shows the resulting dependence structure of
the copulas at various levels of dependence. Figure 2 shows the copulas and the density of the
copulas with Kendall’s correlation equal to 0.5.

In Figure 1:

e row 1 shows the Gaussian copula;
e row 2 shows the Student-t copula with 2 degrees of freedom;
e row 3 shows the Gumbel copula; and

11




e row 4 shows the Frank copula.

e column 1 assumes p = 0.5 for Gaussian and Student-t copulas, § = 1.5 for Gumbel copula
and 6 = 3.5 for Frank copula. This is equivalent to Kendall’s tau of 0.71.

e column 2 assumes p = 0.9 for Gaussian and Student-t copulas, § = 3.5 for Gumbel copula
and 8 = 10.2 for Frank copula. This is equivalent to Kendall’s tau of 0.3333.

e column 3 assumes p = -0.5 for Gaussian and Student-t copulas, no negative corrclation for
Gumbel copula and § = -3.5 for Frank copula. This is equivalent to Kendall’s tau of -0.71.

e column 4 assumes p = -0.9 for Gaussian and Student-t copulas, no negative correlation for
Gumbel copula and 8 =-10.2 for Frank copula. This is equivalent to Kendall’s tau of -0.3333.

Gaussian: rho = 0.5, Kendall tau = 0.3333  Gausslanxho = 0.9, Kendall tau = 0.71  Gaussian:rho = 0.5, Kendall tau = -0.3333 Gaussianrho = -0.9, Kendall tau = -0.71
= s 1
[ s s e k Wi

Frank: Kendall tai

Frank: Kendall tau = -0.71
G

s
bz d
.\':-’»“‘_.:ﬁ-’;\-

Fig. 1. lllustration of the impact of dependence for the bivariate copulas.

Figures 1 and 2 illustrate the following important features of these bivariate copulas.
(1) Both Gaussian and Student-t copulas are symmetric. The Student-t copula has fatter
tails than the Gaussian copula.

(2) The Frank copula is radially symmetric.
(3) The Gumbel copula only models positive dependence.

6.1 Marginal Distributions

Figures 3 to 5 show the distribution of the pair-wise observations of the four copulas with dif-
ferent marginal distributions. We use Normal, Lognormal and Gamma marginal distributions

12
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since these are often used in financial and insurance risk modelling. It is important to consider
the assessment of economic capital in terms of the full distribution of risks allowing for both
the marginal distribution, the level of dependence and the dependence structure.

e column 1 shows p = 0.5 for Gaussian and Student-t copulas, § = 1.5 for Gumbel copula and
6 = 3.5 for Frank copula. This is equivalent to Kendall’s tau of 0.71.

e column 2 shows p = 0.9 for Gaussian and Student-t copulas, 8§ = 3.5 for Gumbel copula and
6 = 10.2 for Frank copula. This is equivalent to Kendall’s tau of 0.3333.

e column 3 shows p = -0.5 for Gaussian and Student-t copulas, no negative correlation for
Gumbel copula and § = -3.5 for Frank copula. This is equivalent to Kendall’s tau of -0.71.

e column 4 shows p = -0.9 for Gaussian and Student-t copulas, no negative corrclation for
Gumbel copula and 8 = -10.2 for Frank copula. This is equivalent to Kendall’s tau of -0.3333.

6.1.1 Normal Marginal Distribution

Figure 3 shows the distribution of the pair-wise observations of the four copulas at various
levels of dependence assuming that the underlying marginal distributions are from a Normal
distribution. As an example, this could be for a model of porilolio returns since these bivariate
distributions generalise the bivariate normal distribution to include different levels of depen-
dence including tail dependence. For the purpose of comparison, we assume that the marginal
distributions have both mean and variance equal to 1. Figure 3 illustrates that,

e As levels of dependence increases, the Gaussian copula has most of the obscrvations at
the origins and toward the diagonals of the two-dimensional space. The distribution of the
observations of the Gaussian copula exhibits an oval shape.

e The Student-t copula has most of the observations concentrated at the diagonals and with
some observations at the tails.

e The Gumbel copula exhibits a ”comet-like” shape.

e The Frank copula exhibits a more "rectangular-like” shape at higher levels of dependence.

14



Gansssian: tho « 0.5, Kenddall i « 03333 Gaussiansho « 09, Kendall tau « 071 Gaussianrho « 0.5, Kendall i « =0.3333  Gaussisrrha « <09, Kendall tau = -0.71
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|
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o 5 -2

u
Germbol: Kerekll tau » 03333
ar - - - .

Frank: Kendall tau = 071
5 -

1]

Fig. 3. Dependence structure of the copulas with Standard Normal marginals.

6.1.2 Lognormal Marginal Distribution

Figure 4 shows the distribution of the pair-wise random observations of the four copulas at
different levels of dependence assuming Lognormal marginal distributions. For the purposes of
comparison, we assume that the marginal distributions have both mean and variance equal 1.
The main features to note are:

(1) Positive dependence gives ”comet” shape plots.

(2) As the levels of dependence increase, the random samples are more concentrated on the
positive diagonal with different shapes for different copulas. For example, the top end of
the Frank copulas are relatively wider spread than the other copulas.

(3) For negative dependency, the ohservations produce a "boomerang” shape.
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Fig. 4. Dependence structure of the copulas with Lognormal marginals.

6.1.3 Gamma Marginal Distribution

Figure 5 shows the distribution of the observations of the four copulas assuming that the
underlying marginal distributions are Gamma. The Gamma distribution has similar properties
to the Lognormal. In general, the Gamma and Lognormal distributions are similar except in
the extreme tails. For the purpose of illustration, we assume that the marginal distributions
have both mean and variance equal to 1. The main features to note are:

e The graphs are very similar to thosc with Lognormal marginals.

e The distribution of the observations are more widely spread at the origin than than for
Lognormal marginals.

e "Comet” and "boomerang” shapes are similar but more prevalent than for Lognormal mar-
ginals.

It is clear from this analysis that the marginal distribution has an effect on the bivariate

distribution as would be expected. The analysis of multivariate data needs to consider both
the marginal distribution and the copula.
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Fig. 5. Dependence structure of the copulas with Gamma marginals.

7 Assessing Risk Measures and Economic Capital

Understanding the extent to which dependence should be allowed for in assessing risk and in
determining economic capital for measures such as VaR and TailVaR is clearly important in
the risk and prudential capital management of insurers and banks. In order to assess the im-
pact of different copulas and marginal distributions we use an experimental simulation study
approach. We assess both VaR and TailVaR. risk measures.

For our experiments, we consider the bivariate case and assume that the marginal distrib-
utions of the two risks are identical. We consider positive dependence since insurance risks
are expected to have positive dependence. Since we are using simulation, we determine the
standard errors (SE) of the estimated values of the risk measures for each experiment using
a bootstrapping method. To do this we re-simulate 1000 times each of the simulations. For
cach simulation, we generate 1000 samples. The assumptions used in the experiments are sum-
marised below. Table 6 sets out the assumptions for the parameters of each of the experiments.
We assess the risk measures for the sum of the two risks in a portfolio.

The bivariate models assessed in this study use the following assumptions:

Independent with Lognormal marginal distributions.

Independent with Gamma marginal distributions.

Positive dependence with Lognormal marginal distributions.
Positive dependence with Gamma marginal distributions.

Strong positive dependence with Lognormal marginal distributions.
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e Strong positive dependence with Gamma marginal distributions.

Experiment Linear Correlation | Kendall correlation | Parameters

Zero dependence 0 0 mean = 1, variance = 1,

Gamma marginal: « =1, 8 =1,

Gumbel parameter — 1,
Frank parameter = 0.5,

t-copula: degree of freedom = 2

Lognormal marginal: 4 = -0.34657359, o = 0.83255461,

Positive 0.5 0.3333 mean = 1, variance = 1,

dependence Gamma marginal: « =1, 8 =1,

Gumbel parameter = 1.5,
Frank parameter = 3.3057,

t-copula: degree of freedom = 2

Lognormal marginal: g = -0.34657359, o = 0.83255461,

High positive 1.0 0.9991 mean = 1, variance = 1,

dependence Gamma marginal: « = 1, 8 = 1,

Gumbel parameter — 12.95,

Frank parameter = 40,

t-copula: degree of freedom = 2

Lognormal marginal: 4 = -0.34657359, o = 0.83255461,

Fig. 6. Assumptions for cach experiment.

7.1 Standard Errors

Since we use a simulation method, we also assess the accuracy of our simulated values by
reporting estimated standard errors. Hardy (2005) [10] discusses the standard errors of the
simulated VaR and TailVaR. Since both VaR and TailVaR are asymptotically unbiased, the
bias is reduced by using a high number of simulations. Hardy (2003)[10] reports different
methods for agsessing the standard errors of estimates for economic capital risk measures.

7.1.1 Standard Error for VaR

For VaR, we can determine the variance of the estimated VaR using a normal approximation
to the binomial distribution as below. The 8 — con fidence interval for the true o — quantile
is (VaR;_x,VaR;j4r), where j = n X o and k is determined from the cumulative normal
distribution using:

Bood(——F 1 (1)

na(l — a)
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« 0.9 | 0.92 | 0.95 | 0.99
k 19 17 13 6

j+k | 919 | 937 | 963 996
ik 881 | 903 937 | 984

Table 3
k values for confidence intervals for VaR for different o probabilities (with 8 = 0.95).

7.1.2  Standard Error for TailVaR

For TailVaR, Hardy (2005) [10] notes that the standard errors can be determined using the
influence function approach. The influence function estimate of the standard error of the
TailVaR, is the standard error of the mean of the sample of n(1—«) worst outcomes adjusted
for the uncertainty in the quantile and is given by

W* + a(TailVaR: — Qr)?

n(l — a) : @)

where L(;y = The j-th quantile of the simulated distribution.
TailVaR} = thc a — TailVaR.

Q* = o — quantile measure.

W* is the variance of the estimator given by,

Z?:na+1 (L(]) - TailVaRZ)2

W= n(l—a)-—1

and

Z?:na-‘rl L(j)

Taul .=
ailVaR, n(l— a)

7.1.3 Bootstrap

Another way to estimate the standard errors is to use a bootstrap approach. This is done
by re-running a large number of simulations. For example, for our estimates, we generate the
distributions of VaR and TailVaR by running 1000 simulations. We then estimate the 95%
confidence intervals for the values of VaR and TailVaR. using re-sampling. The approximate
confidence intervals for VaR and TailVaR based on the bootstrap approach used are (uyor —
20vaRr, pvar +20var) and (UTeitvar — 20TqilvaRs MTailvark +20Taiver) Where the standard
deviations for the risk measures are approximated empirically from the re-sampled estimates
of the risk measures. This is computationally intensive and a comparison with the analytical
approach outlined in Hardy (2005) [10] will provide useful information about the relative
accuracy of these two approaches to estimating the standard errors of the estimated risk
measures.
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7.2

Zero Dependence

We assess different levels of dependence. In the case of zero dependence, we compare the val-
ues of VaR and TailVaR for different copulas assuming that the random variables have zero
dependence. Tables 4 to 6 give the graphical and numerical comparisons of the values of VaR
and TailVaR. The results of the experiments are:

(1)

7.3

With zero dependence, the results show that the Student-t copula produces the highest
estimated values of VaR and TailVaR. particularly for TailVaR at the higher probability
levels.

As expected the estimated values of VaR and TailVaR increases with the probability
level a.

The standard errors of the simulations increase with the probability level used for the risk
measure. Estimation error (standard errors) are important in assessing risk measures and
for the sample size used in these studies they are high, making it difficult to distinguish
statistically between the different copulas in most cases.

Allowing for the standard errors, there is very little difference between the risk measures.
The copula is not as critical as the risk measure used for this level of zero dependence.

Moderate Dependence

In this section we compare the values of VaR and TailVaR for different copulas where the risks
have positive dependence. Tables 7 to 9 give the graphical and numerical comparisons of the
estimates of VaR and TailVaR. The results of the experiments are:

7.4

As with the zero dependence case, the difference between the risk measures do not vary
much between the different copulas. The copula is not as important as the level of
dependence or the marginal distribution in estimating the risk measure.

The standard errors are in general higher than for the case with zero dependence.

The standard errors of the simulations increase with the probability level used in the
risk measure. The estimation of the standard error is important.

As with zero dependence, the values of VaR and TailVaR increases with the probability
level «v as expected.

High Dependence

Tables 10 to 12 gives the graphical and the numerical comparisons for the high dependence

case. In some cases, the differences are more significant that those with lower dependence lev-
els. The results of the experiments are:

(1)

As with the cases of zero dependence and moderate dependence, the values of VaR and
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Table 4 ] )
Zero Dependence with Lognormal and Gamma marginals.
Copula: Gumbel | Gumbel | Frank | Frank | Student-t | Student-t | Gaussian | Gaussian
SE SE SE SE
VaR(90) 3.656 0.1258 3.9531 | 0.1355 3.5869 0.1314 3.7242 0.1253
VaR(92) 3.9171 0.1431 4.2645 | 0.1551 3.9557 0.1504 4.121 0.1433
VaR(95) 4.3645 0.2004 5.1553 | 0.2111 4.8063 0.2198 4.9404 0.1937
VaR(99) 6.6686 0.5608 6.7314 | 0.5876 7.3445 0.7654 6.9539 0.5874
TailVaR(90) 4.864 0.4396 5.4041 | 0.4309 5.2661 0.6579 5.1992 0.4251
TailVaR(92) 5.1365 0.5292 5.7241 | 0.5152 5.6448 0.7969 5.5169 0.5106
TailVaR(95) 5.7411 0.7721 6.3575 | 0.7419 6.4336 1.1772 6.1368 0.7419
TailVaR(99) 8.0594 2.1856 8.5371 | 2.0507 9.1671 3.3849 7.8501 2.0633
Table 5 ) ) R
Zero Dependence with Lognormal marginal distributions.
Copula: Gumbel | Gumbel | Frank | Frank | Student-t | Student-t | Gaussian | Gaussian
SE SE SE SE
VaR(90) 4.0402 0.1135 3.9328 | 0.1351 3.9634 0.1253 3.6528 0.1205
VaR(92) 4.3229 0.1287 | 4.1586 | 0.1485 4.1813 0.1429 3.9146 0.13185
VaR(95) 4.8326 0.1652 4.6963 | 0.1793 4.6816 0.1905 4.5056 0.16615
VaR(99) 6.2819 0.3560 6.6286 | 0.3866 6.3957 0.5342 6.1707 0.36805
TailVaR(90) 5.1197 0.2023 5.0583 | 0.2205 5.1388 0.3011 4.7064 0.20205
TailVaR(92) 5.3477 0.2339 5.3078 | 0.2511 5.4065 0.3555 4.9428 0.2334
TailVaR(95) 5.8217 0.3168 5.8586 | 0.3309 5.9735 0.5034 5.3991 0.3152
TailVaR(99) 7.4912 0.7669 7.4265 | 0.7663 8.3697 1.3278 6.7406 0.7706
Table 6

Zero Dependence with Gamma marginal distributions.
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Table 7 ) )
Moderate Dependence with Lognormal and Gamma marginals.
Copula: Gumbel | Gumbel | Frank | Frank | Student-t | Student-t | Gaussian | Gaussian
SE SE SE SE
VaR(90) 3.6718 0.15735 | 4.1003 | 0.1485 3.6526 0.1523 3.8329 0.1529
VaR(92) 3.8864 0.1894 | 4.5158 | 0.1677 4.0943 0.17937 4.3875 0.1833
VaR(95) 4.6197 0.2672 5.2922 | 0.2182 4.965 0.2519 5.5983 0.2472
VaR(99) 8.0951 0.8819 7.9839 | 0.5978 7.4423 0.8369 7.9304 0.7213
TailVaR(90) 5.3818 0.7558 5.9029 | 0.4729 5.4423 0.7036 6.0082 0.5586
TailVaR(92) 5.7733 0.9156 6.3038 | 0.5656 5.8370 0.8491 6.4781 0.6721
TailVaR(95) 6.6966 1.3505 7.1477 | 0.8146 6.6432 1.2468 7.3759 0.9791
TailVaR(99) 9.9709 3.8686 9.8089 | 2.2552 10.1919 3.5619 10.8337 2.7687
Table 8 ) ) o
Moderate Dependence (p = 0.5) with Lognormal marginal distributions.
Copula: Gumbel | Gumbel | Frank | Frank | Student-t | Student-t | Gaussian | Gaussian
SE SE SE SE
VaR(90) 4.2202 0.1646 4.183 | 0.1492 4.0196 0.1560 4.3707 0.1488
VaR(92) 4.6448 0.1876 4.5688 | 0.1620 4.2671 0.1835 4.851 0.1699
VaR(95) 5.5191 0.2481 5.37 0.1973 5.1574 0.2429 5.7366 0.2216
VaR(99) 8.5211 0.5681 7.2875 | 0.3903 7.4673 0.5929 8.4296 0.5135
TailVaR(90) 5.9629 0.3344 5.6612 | 0.2261 5.6642 0.3394 6.2511 0.29022
TailVaR(92) 6.3520 0.3906 5.9789 | 0.2574 6.0362 0.3980 6.6559 0.3377
TailVaR(95) 7.1370 0.5383 6.5988 | 0.3398 6.8622 0.5498 7.4890 0.4622
TailVaR(99) 9.8133 1.3630 8.3458 | 0.8052 9.9656 1.3734 10.8409 1.1490
Table 9

Moderate Dependence (p = 0.5) with Gamma marginal distributions.
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TailVaR increases with the probability level as expected.

(2) The estimates of the risk measures do not vary significantly by the copula assumed except
for the TailVaR at high probability levels.

(3) The estimated standard errors for the risk measures increase with the probability level
used in the risk measure. The assessment of the estimation error (standard errors) is
important.

(4) The standard errors are in general higher than that with zero dependence.
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Table 10
High Dependence with Lognormal and Gamma marginals.
Copula: Gumbel | Gumbel Frank Frank Student-t | Student-t | Gaussian | Gaussian
SE SE SE SE
VaR(90) 4.3808 0.1868 4.2727 0.1876 4.1744 0.1867 4.3991 0.1869
VaR(92) 4.7944 0.2231 4.6643 0.2213 4.6298 0.2128 5.1219 0.2172
VaR(95) 5.9687 0.3112 5.5546 0.3166 5.5485 0.3004 6.5042 0.3108
VaR(99) 9.7416 0.9518 8.597 0.7851 9.7665 0.9508 8.7271 1.01962
TailVaR(90) | 7.2959 0.8706 6.3571 | 0.53848 6.3103 0.7439 7.4532 0.9491
TailVaR(92) 7.9625 1.0506 6.8285 0.6419 6.7970 0.8953 8.1452 1.1480
TailVaR(95) 9.5321 1.5366 7.8524 0.9234 7.7717 1.3063 9.5382 1.6896
TailVaR(99) | 18.3013 4.3396 11.9929 2.5328 11.8423 3.6758 15.1932 4.8451
Table 11
High Dependence (p = 0.9991) with Lognormal marginal distributions.
Copula: Gumbel | Gumbel Frank Frank | Student-t | Student-t | Gaussian | Gaussian
SE SE SE SE
VaR(90) 4.5271 0.1893 4.474 0.2005 4.8932 0.1971 4.6748 0.1950
VaR(92) 4.8991 0.2141 4.8582 0.2247 5.4104 0.2239 5.2425 0.2150
VaR(95) 5.8523 0.2759 5.6179 0.2811 6.2417 0.2922 5.9359 0.2738
VaR(99) 8.5471 0.6304 8.597 0.4963 9.7665 0.6438 8.7271 0.6334
TailVaR(90) 6.4176 0.3737 6.3403 0.2775 6.9822 0.3668 6.5023 0.3445
TailVaR(92) 6.8357 0.4352 6.7568 0.3106 7.4415 0.4242 6.8896 0.3978
TailVaR(95) 7.7246 0.5967 7.6400 0.3918 8.4106 0.5718 7.6683 0.5411
TailVaR(99) | 10.9541 1.4961 10.1686 | 0.8230 11.6815 1.3929 10.4171 1.3482
Table 12

High Dependence (p = 0.9991) with Gamma marginal distributions.
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7.5 Bootstrap and Analytical Approzimation

Table 13 gives the estimated confidence intervals for the VaR and TailVaR. risk measure esti-
mates. Estimated confidence intervals are given using both re-sampled bootstrap approach and

the analytical approximation. The estimates of the standard error are reported for the 99%
quantile (o) risk measures for a 95% (3) confidence interval. For VaR, the confidence intervals

of the analytical approximations are determined using the approach given in section 7.1.1 and
for the analytical approximations for TailVaR, the confidence intervals are determined using
equations 2 to 4 given in section 7.1.2.

Zero Zero Moderate Moderate High High
Dependence Dependence Dependence Dependence Dependence Dependence
Lognormal CI for CI for CI for CI for CI for CI for
VaRp.99 TailVaRg. 99 VaRp.99 TailVaRg. 99 VaRp.99 TailVaRg. 99
Gaussian
- Bootstrap (5.80, 8.10) (3.81, 11.90) (6.51, 9.34) (5.40, 16.26) | (8.97,12.97) | (5.69, 24.68)
- Approximation | (6.44, 7.82) (7.26, 8.44) (7.43, 10.46) | (8.63, 13.02) | (9.15,12.64) | (12.06, 18.32)
Student-t
- Bootstrap (5.84, 8.84) (2.53, 15.80) (5.80, 9.08) (3.21, 17.17) | (6.75, 10.47) (4.63,19.04)
- Approximation | (6.55, 7.942) | (7.85, 10.47) | (6.46, 10.20) | (8.35,12.02) | (7.71,11.05) | (9.51, 14.16)
Gumbel
- Bootstrap (5.56, 7.76) (3.77, 12.34) (6.36, 9.82) (2.38, 17.55) | (7.87,11.60) | (9.79, 26.80)
- Approximation | (5.66, 8.01) (7.16, 8.95) (7.02, 9.69) (8.74, 11.19) | (8.40, 15.83) | (11.85,24.74)
Frank
- Bootstrap (5.57, 7.88) (4.51, 12.55) (6.81, 9.15) (5.38, 14.22) | (7.24,10.32) (7.02,16.95)
- Approximation | (6.30, 7.78) (7.18, 9.88) (7.43, 9.38) (8.61, 11.00) | (7.96,11.31) | (9.95, 14.03)
Gamma CI for CI for CI for CI for CI for CI for
VaRo.99 TailVaRp .99 VaRo.99 TailVaRp .99 VaRo.99 TailVaRp .99
Gaussian
- Bootstrap (5.44, 6.89) (5.23, 8.25) (7.42, 9.43) (8.58, 13.09) (7.48, 9.96) (7.77, 13.05)
- Approximation | (5.58, 6.46) (4.11, 9.36) (7.25, 10.21) | (9.14, 12.53) | (7.84, 10.00) | (9.15, 11.68)
Student-t
- Bootstrap (5.34, 7.44) (5.76, 10.97) (6.30, 8.62) (7.27,12.65) | (8.50,11.02) | (8.95,14.41)
- Approximation | (5.93, 8.30) (5.52, 11.21) (6.50, 9.20) (6.83, 13.10) | (8.99, 10.47) | (10.30, 13.05)
Gumbel
- Bootstrap (5.58, 6.97) (5.98, 8.99) (7.40, 9.63) (7.14, 12.48) (7.57, 9.51) (8.02, 13.88)
- Approximation | (5.98, 7.06) | (4.78,10.19) | (7.47,9.09) | (8.81,10.81) | (7.94,10.17) | (9.07, 12.83)
Frank
- Bootstrap (5.87, 7.38) (5.92, 8.92) (6.52, 8.05) (6.76, 9.92) (7.36, 9.83) (8.55, 11.78)
- Approximation | (6.03, 7.38) (5.39, 9.45) (6.97, 8.39) (7.57, 9.11) (7.97, 9.62) (9.01, 11.31)
Table 13

Confidence Intervals from Bootstrap and Approximate Methods.

Although the assumed sample size is large for insurance data it is reasonable for asset returns
data. However it is of interest to assess the improvement in the accuracy of the estimated

risk measure from an increase in the sample size. To do this we re-simulate the four copulas

assuming a sample size of 5000 bivariate samples for the case where the marginals are assumed
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to be Gamma and the dependence is moderate with p = 0.5 assuming o = 0.99 for the risk
measure and using 8 = 0.95 for the confidence interval. The results indiacte that:

e The confidence intervals for VaR under the analytical approximations are in similar for VaR
compared with the more numerically intensive bootstrap approach.

e For TailVaR, the confidence intervals using the analytical approximation are similar and
often less than the bootstrap approach.

e Increasing the sample size reduces the confidence intervals for both cases as expected, but
they remain relatively large.

¢ The analytical approximation is quite accurate and more reliable for larger sample sizes.

Copula VaRg.99 TailVaRg.99

Gaussian
- Bootstrap (5000) | (7.72, 8.58) | (10.27, 14.26)
- Approximalion (7.41, 9.63) (12.27, 12.50)
Student-t
- Bootstrap (5000) | (7.79,8.82) | (12.69, 15.12)
- Approximation (7.47,10.06) | (12.18, 13.21)
Gumbel
- Bootstrap (5000) | (6.44, 9.86) (8.94, 16.70)
- Approximation (7.30,9.63) | (12.47,13.21)

Frank
- Bootstrap (5000) | (6.76, 7.44) | (8.47, 11.31)
- Approximation (6.68, 8.12) (9.35, 10.43)

Table 14
Comparison of bootstrap with 1000 re-samples and the approximate method using
5000 sample size
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7.6 Diversification benefits

An important practical issue for portfolios of risks is the extent of the diversification benefits
from holding less than perfectly correlated risks. Risk portfolios with multiple lines of business
can result in reductions in (regulatory) capital compared to stand alone risks because of the
diversification benefits. Recent literature such as Tang and Valdez (2005) [15] and Dacorogna
(2005) [4] study the impact of the dependence risks measures on the diversification effects for
multi-line insurers. Dacorogna (2005)[4] demonstrates that the diversification benefits changes
inversely with correlation in the context of DFA.

We assess the impact on the diversification benefits of the level of dependence for different,
copulas with different marginals. To begin with we define formally what is meant by a diver-
sification benefit.

Following Dhaene et al (2002a [5], 2002b [6]), suppose that the random variables X; and X»
are comonotonic (perfectly dependent), and S is the aggregate sum of the random variables
X; and X5 then:

VaR(Z) = VaR(X1) + VaR(Xs)

and

TailVaR(Z) = TailVaR(X;) + TailVaR(Xs)

If the businesses are dependent, then we can obtain diversification benefits by constructing a
portfolio with total capital requirements determined on an aggregate basis. The diversification
benefits for the VaR(S) and TailVaR(S) measures can be defined as below.
VaR(S)
DBy,rg=1— ———=
Vel VaR(Z)
TailVaR(S)

DBraaver =1- oot
TailVak TailVaR(Z)

We compare diversification benefits relative to the comonotonic case. These differences should
always be non-negative. However, there are circumstances where the values of DBy ,g are
negative. This is due to the fact that VaR is not sub-additive.

To quantify the scnsitivity of the diversification benefits for the different copulas to the changes
in the dependence levels, we compare the values of VaR and TailVaR. of the aggregate sum
to the sum of the values of VaR and TailVaR on a stand alone basis. Tables 15, 16, 17
and 18 report the results of the comparison of the diversification benefits at two probability
levels for both lognormal and gamma marginal distributions. The values for the risk measures
were derived from 1000 simulations for cach case. The case with corrclation equal to 1 was
estimated separately from the stand alone case and differs because of the different simulated
values used in each case and the standard errors of the estimated values shown in the tables.
Our results demonstrate that the diversification benefit decreases as the levels of dependence
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increases, as expected. This is consistent with results from Dacorogna (2005) [4]. Tables 15 to
18 demonstrate the sensitivity of the diversification benefits to the change of dependence for
the different copulas and risk measures. The sensitivity measures (SM) of the diversification
benefits to the correlation is determined as

SM = Abs[(ADB/DBoia)/(Dp/ poid)]
This measure is an elasticity measure. If SM is large, then the diversification benefit is relatively

sensitive to the changes in dependence. This means that a small changes in dependence will
have a proportionately large impact on the diversification benefits.

VaR - Lognormal {35%) I ‘ TallVaR - Lognormal {95%
| \
02000 | | 03000 4
02500 4
0150
02000 4
oo 01500
° 2 01000 4
0.050C
00500 4
o 00000
0 1
00500 00500
Corelation Correlation
}— =Gumbel — - —Frark Studentt — - - Gauss\an! | ‘ [— - =rumbel Frank — — Srertts - - - Ganasian |
| [ L I
Dependence: 0 0.5 1.0 Standalone | Percentage | Percentage | Sensitivity
Change Change Measure
(0 to 0.5) (0.5 to 1) (0.5 to 1)
Gumbel
VaR 4.61168 | 5.12214 | 5.56417 5.56894 -18% -16% 0.99
TailVaR 7.06875 | 8.93574 | 9.73061 9.69805 -39% -16% 1.04
Frank
VaR 4.76896 | 5.08205 | 5.67033 5.56804 -11% -21% 1.21
TailVaR 7.27179 | 7.6977 | 9.02292 9.69805 -9% -27% 0.66
Student t
VaR 4.56248 | 5.00516 | 5.57502 5.56894 -16% -20% 1.01
TailVaR 7.72864 | 8.63863 | 9.70578 9.69805 -19% -22% 1.01
Gaussian
VaR 4.60657 | 5.10412 | 5.54911 5.56894 -18% -16% 0.96
TailVaR 7.04907 | 8.1797 | 9.71435 9.69805 -23% -32% 1.01
Table 15

VaR and TailVaR with Lognormal marginals at 95% probability.
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VaR - Gamma (95% I TallVaR - Gamma {25%)
02500 l 03500 1
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— =Gumbel — - —Frank Stdentt — - - Gaussian — - =Gumbel Frank — — Studentt- - - - Gaussian
Dependence: 0 0.5 1.0 Standalonc | Percentage | Percentage | Sensitivity
Change Change Measure
(0 to 0.5) (0.5 to 1) (0.5 to 1)
Gumbel
VaR 4.74086 | 5.45965 | 5.97033 5.9908 -24% -17% 0.96
TailVaR 6.22014 | 7.91653 | 8.58497 8.58367 -40% -16% 1.0
Frank
VaR. 4.94274 | 5.32548 | 6.06552 5.9908 -13% -25% 1.11
TailVaR 5.82998 | 6.25967 | 7.24418 8.58367 -10% -23% 0.42
Student t
VaR. 4.71261 | 5.33089 | 6.00167 5.9908 -21% -22% 1.02
TailVaR 6.8583 7.78444 | 8.58351 8.58367 -22% -19% 1.0
Gaussian
VaR 4.74659 | 5.35774 | 5.99424 5.9908 -20% -21% 1.01
TailVaR 6.24575 | 7.3907 | 8.58153 8.58367 -27% -28% 1.0
Table 16

VaR and TailVaR with Gamma marginals at 95% probability.
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VaR - Lognormal {35%) I ‘ TailvaR - Lognormal {35%)
02000 | ‘ 03000 4
02500 4
01500
02000 4
0.100C 01500 |
° e 01000 4
01050
00500 4
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Corelation Correlation
e =GUmbel = - =Frank Studentt — - - Gaussian | ‘ — - =Gunbel Frank — — Stugertt- - - - Gaussian
Dependence: 0 0.5 1.0 Standalonc | Percentage | Percentage | Sensitivity
Change Change Measure
(0 to 0.5) (0.5 to 1) (0.5 to 1)
Gumbel
VaR 7.22168 8.96562 9.82551 9.8392 -35% -17% 0.98
TailVaR. 10.73242 | 14.78677 | 16.0663 15.9596 -51% -16% 1.09
Frank
VaR. 7.47496 7.94471 9.5919 9.8392 -10% -33% 0.87
TailVaR. 10.97305 | 11.54679 | 13.75618 15.9596 7% -28% 0.50
Student t
VaR. 7.75267 8.6941 9.83334 9.8392 -19% -23% 0.99
TailVaR 12.61603 | 14.18707 | 15.9806 15.9596 -20% -22% 1.01
Gaussian
VaR 7.23463 8.39203 9.84707 9.8392 -24% -30% 1.01
TailVaR 10.68378 | 12.76332 | 16.03861 15.9596 -26% -41% 1.02
Table 17

VaR and TailVaR with Lognormal marginals at 99% probability.

Interestingly we find that the copula and marginal distribution assumptions do not have a
major impact on the diversification benefits. The only case where this is not so is for the
TailVaR risk measure at the high probability levels. The level of dependence is the main
driving factor of the diversification benefits.
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Dependence: 0 0.5 1.0 Standalonc | Percentage | Percentage | Sensitivity
Change Change
(0t0 0.5) | (0.5t01)
Gumbel
VaR. 6.60477 | 8.45984 9.19831 10.6786 -35% -14% 0.33
TailVaR 8.20134 | 11.30551 | 12.16188 12.1224 -51% -14% 1.05
Frank
VaR. 6.90903 7.43024 8.92775 10.6786 -10% -28% 0.46
TailVaR 8.55037 | 9.12212 10.80508 12.1224 -9% -28% 0.56
Student t
VaR 7.26056 | 8.33346 9.23692 10.6786 -20% -17% 0.39
TailVaR 9.92333 | 11.19752 | 12.10149 12.1224 -21% -15% 0.98
Gaussian
VaR 6.64307 | 7.88716 9.20978 10.6786 -23% -25% 0.47
TailVaR 8.26123 | 10.15692 | 12.11177 12.1224 -31% -32% 0.99
Table 18

VaR and TailVaR with Gamma marginals at 99% probability.

8 Summary of Results

The main results of this study are:

o The estimates of VaR and TailVaR increase with the level of dependence as would be ex-
pected but the effect of the copula is not as important as the marginal distributions and
the level of dependence except in the case of the TailVaR risk measure for high probability

levels.

e Risk measures in practice are estimates. The standard errors of these estimates, even for
large sample sizes, are quite large. Regulators should take into account estimation errors in

setting risk basc capital requirements.measure used and the level of dependence.

e The standard errors of the estimates increase with the probability level used in the risk

measure and are higher for the TailVaR risk measure.

e Asexpected, the estimated confidence intervals for the VaR and TailVaR risk measure reduce
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with an increase in sample size but remain significant in size even for rcasonable large sample
sizes.

e The analytical approximation for the standard errors of the risk measures are reasonable
for assessing the accuracy of risk measure estimates reducing the need for the high compu-
tational requirements of bootstrap estimates.

e The level of dependence has a significant impact on the diversification benefits in contrast
to the copula used. Estimation of the marginal distribution and overall levels of dependence
are important in determining risk baaed economic capital using VaR or TailVaR.

9 Conclusion

Dependence for risk measures is an important factor in risk based capital assessment for banks
and insurance companies with multiple lines of business. The advantage of a diversifying risk
portfolio is the reduced regulatory capital arising from diversification benefits. There is an
incentive for companies to properly measure and account for the dependence amongst risks.
Copulas have become an accepted method for assessing capital requirements for dependent
risks. Insurance rigks are in general positively correlated and the level of dependence is im-
portant in assessing risk based capital. We have used experiments for bivariate dependence
models using different copulas, different marginal distributions and different levels of depen-
dence to quantify the impact of these factors on risk based capital using VaR and TailVaR
risk measures. We have assessed the accuracy of the estimated risk measures by quantifying
standard errors of the estimates.

The results of the case study experiments interestingly demonstrate that the choice of copula
does not have such a significant impact on the estimated risk measures except for the case of
the TailVaR risk measure at high probability levels. The overall level of dependence and the
marginal distribution are more important in determining the estimated risk measure. Even for
large sample sizes, the standard errors of the estimated risk measure are large and this should
be taken into account in establishing risk based capital. The analytical approximation we have
used for the standard errors of the risk measure estimates performs reasonably well and can
be used to save the computational effort required for a more extensive bootstrap approach.
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